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17 ABSTRACT

18 Aerosol optical depth (AOD) and fine particulate matter with a diameter of less than 

19 2.5μm (PM2.5) play crucial roles in air quality, human health, and climate change. 

20 However, the complex correlation of AOD–PM2.5 and the limitations of existing 

21 algorithms pose a significant challenge in realizing the accurate joint retrieval of these 

22 two parameters at the same location. On this point, a multi-task learning (MTL) 

23 model, which enables the joint retrieval of PM2.5 concentration and AOD, is proposed 

24 and applied on the top-of-the-atmosphere reflectance (TOAR) data gathered by the 

25 Fengyun-4A Advanced Geosynchronous Radiation Imager (FY-4A AGRI), and 

26 compared to that of two single-task learning (STL) models, namely, random forest 

27 (RF) and deep neural network (DNN). Specifically, The MTL model achieved a 

28 coefficient of determination (R2) of 0.88 and a root mean square error (RMSE) of 0.10 

29 in AOD retrieval. In comparison to the RF model, the R2 increased by 0.04, the 

30 RMSE decreased by 0.02, and the percentage of retrieval results falling within the 

31 expected error range (Within-EE) rose by 5.55%. The R2 and RMSE of PM2.5 

32 retrieval by MTL model are 0.84 and 13.76 μg·m–3, respectively. Compared with the 

33 RF model, the R2 increased by 0.06, the RMSE decreased by 4.55 μg·m–3, and the 

34 Within-EE increased by 7.28%. Additionally, compared to the DNN model, the MTL 

35 model showed an increase of 0.01 in R2 and a decrease of 0.02 in RMSE in AOD 

36 retrieval, with a corresponding increase of 2.89% in Within-EE. For PM2.5 retrieval, 

37 the MTL model exhibited an increase of 0.05 in R2, a decrease of 1.76 μg·m–3 in 
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38 RMSE, and an increase of 6.83% in Within-EE. The evaluation suggests that the MTL 

39 model is able to provide simultaneously improved AOD and PM2.5 retrievals, offering 

40 a critical advantage in capturing the actual distribution of fine particulate matter with 

41 high time efficiency.

42 Key words: AOD; PM2.5; FY-4A; multi-task learning; joint retrieval 

43 https://doi.org/10.1007/s00376-024-3222-y

44 Article Highlights:

45  The simultaneous retrieval of AOD and PM2.5 concentration at a large spatial scale 

46 is achieved by employing a multi-task learning algorithm.

47  Multi-task learning can retrieve PM2.5 and AOD with higher accuracy, compared to 

48 Single-task learning.

49  Multi-task learning provides new insights on high-efficiency monitoring of aerosol 

50 pollution.
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52 1. Introduction

53 Fine particulate matter (PM2.5) refers to suspended particles with aerodynamic 

54 diameter less than or equal to 2.5 μm, which is an important indicator of air pollution 

55 (Hill et al., 2023). On the other hand, aerosol optical depth (AOD) is a critical 

56 parameter describing the attenuation of solar radiation as caused by aerosols in the 

57 atmosphere. Both PM2.5 and AOD play pivotal roles in air quality, human health (Ho 

58 et al., 2018), and climate change research (Zhang et al., 2017). Therefore, realizing 

59 high-precision detection of aerosols over large areas is important for the environment 

60 and human health. Whereas ground-based measurement constitutes a means of 

61 acquiring reliable and high-precision information, the measurement sites are, more 

62 often than not, distributed unevenly and sparsely. For instance, approximately 90% of 

63 PM2.5 monitoring sites in China are concentrated in the eastern and coastal regions, 

64 but in the western regions, such as the Tibetan Plateau or other high-altitude areas, 

65 measurement sites are grossly sparse (Xiao et al., 2016). No better than that, the 

66 existing number of Aerosol Robotic Network (AERONET) sites for AOD 

67 measurements within the Asian-Pacific region is fewer than 90. Therefore, 

68 AERONET AOD data are usually used only for regional studies of aerosols and 

69 validation of remotely sensed data, and effective monitoring of aerosols on a large 

70 scale cannot be realized (Zhang et al., 2018; Hu et al., 2014). The unevenness and 

71 scarcity of ground-based measurement sites, which implies limited observation 
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72 records, pose significant challenges to conducting comprehensive aerosol studies at a 

73 sub-continental scale, such as over China, which is the country concerning this work. 

74 The estimation of surface PM2.5 using satellite AOD data (hereafter, AOD–PM 

75 method) has emerged as the predominant approach over the past decade (Xue et al., 

76 2020). The mapping from predictors (satellite AOD and auxiliary variables) to the 

77 predictand (PM2.5) are mostly data-driven, as exemplified by multiple linear 

78 regression (Gupta & Christopher, 2009), linear mixed-effect model (Lee et al., 2011), 

79 geographically weighted regression (Hu et al., 2013), random forest (RF) (Chen et al., 

80 2018), convolutional neural network (CNN), long short-term memory (LSTM) 

81 network (Xu et al., 2021; Pak et al., 2018), among other models. An important 

82 premise and theoretical foundation for retrieving surface PM2.5 concentration with 

83 satellite AOD is the strong correlation and connection between PM2.5 and AOD (Li et 

84 al., 2015). Therefore, the availability and reliability of such satellite-derived PM2.5 

85 necessarily depend upon those of satellite AOD. In this regard, to alleviate the errors 

86 introduced by the intermediate AOD estimation, researchers have explored the 

87 possibility of directly obtaining PM2.5 from the top-of-the-atmosphere reflectance 

88 (TOAR) captured by imagers onboard satellites; this approach is known as the 

89 end-to-end method (Yang et al., 2020). For example, Shen et al. (2018) introduced a 

90 TOAR-PM method that established the relationship between TOAR, observation 

91 angles, meteorological factors and PM2.5; taking the Wuhan urban agglomeration as 

92 the study area, they achieved an in-sample cross-validated coefficient of 
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93 determination (R2) and a root mean square error (RMSE) of 0.87 and 9.89 μg·m–3, 

94 respectively. Based on an RF model and TOAR data from Himawari-8, Bai et al. 

95 (2021) estimated the PM2.5 over the Yangtze River delta region; their finding revealed 

96 an R2 value of 0.75 and a RMSE of 18.71 μg·m–3. Similarly, Mao et al. (2021) 

97 proposed a RF-based method to directly estimate hourly ground-level PM2.5 in China 

98 from the Fengyun-4A Advanced Geosynchronous Radiation Imager (FY-4A AGRI) 

99 TOAR, and evaluated all training samples by cross-validation method and keep an 

100 acceptable accuracy (R2 = 0.90, RMSE = 15 μg·m–3). Yin et al. (2021) also utilized 

101 the Himawari-8 TOAR to estimate the concentration of PM2.5 over China, but by 

102 employing a light gradient boosting machine (LightGBM); the R2 and RMSE of PM2.5 

103 estimated are 0.83 and 23.7 μg·m–3.

104 As for AOD, several physical retrieval algorithms have long been well known, 

105 including the dark target (DT) (Kaufman et al., 1997), deep blue (DB) and 

106 Multi-Angle Atmospheric Correction (MAIAC) algorithms (Lyapustin et al., 2018). 

107 Similar to the case of PM2.5, end-to-end AOD estimation algorithms have also been 

108 used as promising alternatives to the physical algorithms. For instance, Ding et al. 

109 (2022) employed a so-called “neural network aerosol retrieval for geostationary 

110 satellite (NNAeroG)” method to estimate AOD over the full disk area of FY-4A. The 

111 validation result demonstrated an RMSE of 0.24, an R2 of 0.73, and 58.7% AOD 

112 values falling within an expected error envelope of ± (0.05 + 15%×AODAERONET), 

113 which is abbreviated as EE15 hereafter. She et al. (2022) proposed a Landsat-8 AOD 
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114 retrieval algorithm based on DNN, which successfully retrieved AOD in a longitude 

115 range of 30°W–160°E and a latitude range of 60°S–60°N. The estimated AOD was 

116 found to exhibit excellent agreement with AERONET AOD, with an R2 of 0.71, an 

117 RMSE of 0.15, and 61% of the retrieved AOD values falling within an expected error 

118 envelope of ± (0.05 + 20%×AODAERONET).

119 Regardless of the retrieval subject (i.e., PM2.5 or AOD), most current 

120 TOAR-based retrieval methods are single-task learning (STL) models. In STL, 

121 individual tasks employ independently trained models without explicit mechanisms to 

122 support information sharing across different tasks. However, applying STLs on 

123 TOAR data, though simple in conception, are confined by many factors. For instance, 

124 there is a conceptual difference between PM2.5, which reflects the near-surface 

125 turbidity of the atmosphere, and TOAR, which covers the atmospheric information 

126 from surface to several hundred kilometers in altitude. This vertical distribution depth 

127 mismatch makes PM2.5 retrieval more challenging. On the other hand, retrieving AOD 

128 from TOAR faces two general difficulties. First, ground-based observatories based on 

129 ground-based instruments (e.g., sun photometers) are mainly located in the eastern 

130 and coastal regions of China, such as the North China Plain region, the Yangtze River 

131 Delta region, and the Pearl River Delta region (Xun et al., 2021). Due to the sparse 

132 distribution of these stations, data-driven models may not be able to capture more 

133 complex regional features, thus risking overfitting. Second, missing values often 

134 occur due to cloud cover (Kokhanovsky et al., 2007), thereby reducing the number of 
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135 available samples. During the cloud detection process, heavy aerosols can be 

136 misclassified as clouds (Song et al., 2019), which enhances the mutual interference 

137 between clouds and aerosols. Therefore, there are significant limitations in improving 

138 the retrieval accuracy of PM2.5 and AOD. It is encouraging that multiple studies have 

139 shown a correlation between PM2.5 and AOD (Zheng et al., 2017; Yang et al., 2019). 

140 Given the existence of this correlation, is it possible to employ a method that 

141 effectively utilizes this relationship to jointly retrieve PM2.5 and AOD using TOAR 

142 data, even with a limited number of samples?

143 In what follows, any method that allows for the joint retrieval of multiple 

144 correlated parameters is referred to as multi-task learning (MTL). One distinct 

145 advantage of MTL over STL is that it allows parameters sharing to a certain degree 

146 between several related learning tasks, thereby improving the performance of all tasks 

147 (Ruder, 2017; Zhang & Yang, 2017). In fact, MTL is a general concept that goes far 

148 beyond the retrieval of atmospheric parameters. But in recent years, several MTL 

149 approaches have been adopted by atmospheric scientists. For instance, Zhang et al. 

150 (2020) proposed an MTL model that combines CNN and gated recurrent unit (GRU) 

151 for multi-step-ahead multi-station PM2.5 prediction. It is tested on three monitoring 

152 stations located in three different districts of Lanzhou, China, with an RMSE of 7.96 

153 μg·m–3, indicating better performance in intensive air quality prediction than previous 

154 models based on simple hybridization. Further, to fully utilize the meteorological 

155 information from the monitoring stations, Xu and Yoneda (2021) proposed a long 
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156 short-term memory (LSTM) autoencoder MTL model to predict PM2.5 time series in 

157 multiple locations city wide, which greatly improved the prediction accuracy and 

158 calculation cost compared with the traditional LSTM model. Meanwhile, in order to 

159 verify the performance difference between MTL model and STL model, Song et al. 

160 (2022) employed attentive MTL model to predict air quality in urban stations. In the 

161 comparison of results in Seoul, the proposed attentive model with MTL outperformed 

162 the STL attentive model in terms of accuracy performance, with RMSE values for 

163 PM2.5 being 8.36 and 8.66 μg·m–3, respectively. On the other hand, in order to 

164 enhance the input, the spectral and spatial information is jointly used to retrieve fine 

165 mode fraction (FMF), Chen et al., (2020) proposed an artificial neural network for 

166 aerosol retrieval (NNAero) to jointly retrieve AOD and (FMF). The input data are the 

167 Moderate Resolution Imaging Spectroradiometer (MODIS) TOAR together with 

168 MODIS-derived surface reflectance in 5 spectral bands, and the labels are AERONET 

169 FMF and AOD. The results show that 68% of the NNAero AOD values are within 

170 EE15, which is better than the DT algorithm (31% within EE15).

171 This contribution aims to simultaneously retrieve AOD and PM2.5 concentrations 

172 over China using FY-4A AGRI data based on an MTL algorithm. The performance of 

173 the model is thoroughly evaluated using ground-based observations and compared 

174 with that of the classical RF and DNN models. The rest of the paper is organized as 

175 follows: Section 2 introduces the various datasets used in this study, among which the 

176 FY-4A AGRI data and European Center for Medium-Range Weather Forecasts’ 
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177 (ECMWF’s) fifth-generation reanalysis (ERA5) are used as model inputs, whereas the 

178 Multi-Angle Atmospheric Correction (MAIAC) AOD data and the ground-based 

179 PM2.5 observations from two sources act as the training targets and out-of-sample 

180 verifications. In Section 3, a detailed description of data processing and the setups of 

181 the machine-learning models are provided. Section 4 summarizes the statistical results 

182 and evaluates the performance of the models. Finally, conclusion follows in Section 5.

183 2. Data

184 This study utilized FY-4A AGRI and ECMWF ERA5 data, spanning from 

185 March 12, 2018, to March 11, 2019, covering the geographical expanse of China, as 

186 inputs for the MTL model. For the same region and time frame, the MAIAC AOD 

187 and the PM2.5 measurements, collected by the China Environmental Monitoring 

188 Center (CEMC), are used as the targets during learning. Furthermore, PM2.5 

189 measurements obtained from the Environmental Protection Department (EPD) in 

190 Hong Kong (HK) and AERONET AOD data are utilized for out-of-sample 

191 verification. The Long-term Gap-free High-resolution Air Pollutant (LGHAP) 

192 concentration dataset was employed to assess and validate the performance of the 

193 MTL model in Northwest China.

194 2.1FY-4A /AGRI data

195 FY-4A, which was launched on December 11, 2016, has capabilities that are 

196 greatly enhanced, as compared to its predecessors, in terms of environmental and 
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197 weather monitoring, warning, and forecasting. The AGRI sensor onboard FY-4A has 

198 14 channels and a wavelength range of 0.45–13.8 μm, covering the visible (VIS), 

199 near-infrared (NIR), medium infrared, and long infrared spectra, with a spatial 

200 resolution of 1km (Fu et al., 2024). The level-1 FY-4A AGRI TOAR data are 

201 available online (http://satellite.nsmc.org.cn/). In this study, three channels that are 

202 known to related to aerosol are selected, namely, 0.45–0.49 μm (CH01), 0.75–

203 0.90 μm (CH03), and 2.1–2.35 μm (CH06). Furthermore, geometrical properties 

204 including solar zenith angle (SOZ), solar azimuth angle (SOA), satellite zenith angle 

205 (SAZ), and satellite azimuth angle (SAA) are also computable parameters that are to 

206 be used as inputs.

207 2.2 Meteorological data

208 ERA5, which is a global atmospheric reanalysis product developed by ECMWF 

209 with a spatial resolution of 0.25°×0.25°, is used as an auxiliary dataset to provide the 

210 meteorological factors that can affect the composition and transport of aerosols (Deng 

211 et al., 2012). The selected meteorological factors include the u- and v-component 

212 wind at a height of 10 m (U10, V10, m/s), temperature at a height of 2 m (T2m, K), 

213 surface pressure (Sp, Pa), boundary layer height (Blh, m), total column ozone (Tco3, 

214 DU), total column water vapor (Tcwv, kg/m2); these can be directly downloaded from 

215 the C3S climate data store (https://cds.climate.copernicus.eu/) with relative ease, 

216 owing to the mature data dissemination system of ECMWF.
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217 2.3 MODIS MAIAC AOD 

218 The Terra and Aqua satellites, with MODIS sensors onboard, were launched in 

219 December 1999 and May 2002, respectively. There are four standard land MODIS 

220 AOD products, which have been retrieved using DT, DB, DT–DB combined, and 

221 MAIAC algorithms (Xie et al., 2019). Among these products, the MAIAC AOD has 

222 the highest spatial resolution of 1 km. Validation results with AERONET AOD show 

223 that MAIAC AOD retrievals are highly correlated with ground-based AOD 

224 measurements. The correlation coefficients (R) are greater than 0.8 at more than 68% 

225 of AERONET sites. The accuracy of MAIAC AOD retrievals is high (within expected 

226 error (EE) = 87.49% and 83.15%) in the regions of tropical rainforest climate and 

227 tropical open forest climate (Qin et al., 2021). For that reason, the daily MAIAC AOD 

228 product at the wavelength of 550 nm is used in this work. This product has passed 

229 quality assurance, cloud screening, and adjacency testing (Lyapustin et al., 2018).

230 2.4 Ground-based observation data

231 Quality-controlled hourly PM2.5 concentration measurements are collected from 

232 CEMC (http://www.cnemc.cn), with regularly calibrated sensors located at 1590 sites 

233 across the China (see Fig. 1); these data are to be used as training targets. For 

234 out-of-sample verification, the hourly PM2.5 concentrations data at 15 air-quality 

235 monitoring stations in HK are acquired from the Environmental Protection 

236 Department (EPD) website (http://www.epd.gov.hk/epd/). The hourly PM2.5 

237 concentration were measured using the micro-oscillation balance method and β 
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238 absorption method, and the uncertainty is said to be within 5 μg·m–3 (Miao and Liu, 

239 2019). As for AOD data, they are sources from the AERONET, which is the world’s 

240 largest ground-based aerosol observation network. AERONET provides observations 

241 of aerosol properties (https://aeronet.gsfc.nasa.gov/), such as optical, microphysical or 

242 radiative properties. AERONET provides AOD in seven wavelength bands (340, 380, 

243 440, 500, 675, 870, and 1020 nm). In this study, AOD at 550 nm is least-squares fitted 

244 using the well-known quadratic relationship between AOD and wavelength (Fu et al., 

245 2023).

246

247 Fig. 1. Spatial distribution of AERONET sites (red stars) and PM2.5 ground stations 

248 (blue/black dots). Annotated with black and blue dots are PM2.5 sites used for model 

249 training and testing, respectively. The background map indicates the type of ground 

250 cover from MODIS in 2018.

251 2.5 LGHAP concentration dataset

252 We obtained the LGHAP dataset from the Earth System Science Data website 
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253 (https://www.earth-system-science-data.net). The dataset synergistically integrates 

254 multimodal aerosol data from different sources using a tensor-flow-based data fusion 

255 method to generate daily gapless AOD products for China from 2000 to 2020 with a 

256 spatial resolution of 1 km. Subsequently, the PM2.5 concentration on continuous space 

257 was estimated using an integrated learning approach. The data were stored in NetCDF 

258 format, and code was provided to help users read and visualize the data (Bai et al., 

259 2022). The verification results of ground observation data show that LGHAP AOD 

260 data is highly correlated with AERONET AOD data, with an R of 0.91 and RMSE 

261 equaling 0.21. In addition, PM2.5 estimates were highly correlated with ground-based 

262 measurements, with an R of 0.95 and RMSE equaling 12.03 μg·m–3. In this study, we 

263 used LGHAP AOD and LGHAP PM2.5 data to verify the estimation results of MTL 

264 model in Northwest China.

265 3 Methodology 

266 Figure 2 illustrates the workflow of this study, including dataset preprocessing, 

267 model training and validation, and retrieval of AOD and PM2.5 concentrations. The 

268 workflow is applied not only to the MTL model but also two classical STL models 

269 (RF and DNN).

270 3.1 Data preprocessing

271 Because data from multiple sources are used in the study, in order to ensure 

272 spatial scale consistency, satellite and auxiliary reanalysis data are resampled to a grid 
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273 size of 0.01°×0.01° using bilinear interpolation (Wei et al., 2019). Subsequently, all 

274 data are spatially matched based on the nearest-neighbor grid cells to the PM2.5 

275 stations. Regarding temporal matching, PM2.5 values from two hours adjacent to 

276 MODIS overpass time (02:30 UTC for Terra and 05:30 UTC for Aqua) and FY-4A 

277 data within 2.5 min of the overpass time are averaged. Reanalysis data meeting this 

278 temporal requirement are drawn from the time series. To filter for data with high 

279 quality and reliability, samples containing zero and invalid values are rejected. At the 

280 same time, because PM2.5 and AOD have lognormal distributions, a logarithmic 

281 transformation is applied, as to make the data more symmetric and stable. After data 

282 filtering, a total of 132,540 samples remains for model training and validation. Of 

283 these, 90% of the sites are used for training the model (marked as black dot in Fig.1), 

284 while the remaining are used for testing the model (marked as red dot in Fig. 1). It is 

285 worth noting that the proportion of MODIS MAIAC AOD data divisions based on 

286 PM2.5 sites matched is the same as for PM2.5. To mitigate the impacts of outliers on 

287 model fitting, normalization and standardization must be applied to all variables prior 

288 to training. In the feature selection stage, we adopted the method of permutation 

289 feature importance to select 17 most representative features as the input of the model, 

290 as shown in Table 1. Permutation feature importance is a model inspection technique 

291 that measures the contribution of each feature to a fitted model’s statistical 

292 performance on a given tabular dataset (https://scikit-learn.org/).
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293

294 Fig. 2. Machine learning framework to retrieve AOD and PM2.5 concentrations from 

295 various sites in China.
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297 Table 1. Details of input datasets used in this study.

Field Variables
Spatial 

resolution 
(km)

Main scientific objectives

0.45–0.49um 
(CH01)

1 Small particle aerosol, true color

0.75–0.90um 
(CH03)

1 Vegetation, aerosolsFY-4A AGRI

2.1–2.35um 
(CH06)

2-4 Cirrus cloud, aerosol, particle size

SAA 4
SAZ 4
SOA 4
SOZ 4
Lon -

FY-4A 
geo-data

Lat -

Position information from ground 
stations and satellite

Blh 25 Planetary boundary layer height
T2m 25 2-m air temperature
U10 25 10-m eastward wind
V10 25 10-m northward wind

Tcwv 25 Total column water vapor
Tco3 25 Total column ozone

ECMWF/ERA5

Sp 25 Surface pressure

Others Mon -

The month values were converted 
to a cosine distribution in the range 

of -1 to 1 to better represent 
seasonal effects.

298

299 3.2 STL models

300 In the field of satellite remote sensing, RF and DNN are two widely used 

301 machine-learning algorithms. RF is a popular ensemble learning method that has been 

302 widely applied for the retrieval of surface solar radiance (Shi et al., 2023), PM2.5 and 

303 AOD estimation (Wei, et al., 2019; Chen et al., 2018). Similarly, She et al. (2020) 
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304 demonstrated that AOD retrieved with a DNN model has good reliability. Given such 

305 previous experience, RF and DNN are selected in this study as the STL models for 

306 benchmarking purposes.

307 RF is a classic ensemble learning method based on decision trees, which can 

308 quantify nonlinear relationships; its network structure is depicted in Fig. 3a. The 

309 algorithm has good robustness and the ability to deal with high-dimensional data and 

310 can deal with missing values and outliers effectively. In addition, the output results 

311 are easily interpretable and understandable.

312 The DNN is simply a multiplayer perceptron with more than two hidden layers 

313 (Yuan et al., 2020). The DNN architecture used in this paper is presented in Fig. 3b, 

314 which consists of one input layer (17 predictors), five hidden layers, and one output 

315 layer, which outputs either AOD or PM2.5 depending on the learning task. Each 

316 hidden layer contains neurons, whose value is computed by taking a linear 

317 combination of all the neuron values from the previous layer using multiple weights 

318 and a bias term; in that the network is a fully connected one. This is followed by the 

319 application of a nonlinear activation function, to make the output more relevant to the 

320 predicted value. In this study, the rectified linear unit (ReLU) as the chosen as the 

321 activation function (Glorot et al., 2011).
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322

323 Fig. 3. The architecture of (a) random forest algorithm and (b) deep neural network.

324 3.3 MTL model

325 To incorporate the potential nonlinear spatial correlations between AOD and 

326 PM2.5 retrievals, MTL is thought functional, as it is able to learn multiple related 

327 prediction tasks at the same time and to share the feature information of multiple tasks 

328 (Ruder, 2017). Compared with STL, MTL has stronger abilities in generalization and 

329 feature learning, and thus has become increasingly popular in the field of artificial 

330 intelligence (Ranjan et al., 2019). When performing MTL, there lie two main 

331 difficulties: handling multiple loss functions and designing an efficient parameter 

332 sharing mechanism.

333 When dealing with the loss function during MTL, a common practice is to add 

334 each individual loss function linearly, as illustrated in Eq. (1):

335 𝐿total = ∑ 𝑤𝑖𝐿𝑖   (1)

336 where 𝑤𝑖 and 𝐿𝑖 represent the weights and losses of task i, respectively, and 𝐿total 
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337 represents the total loss function. Since the overall performance heavily relies on the 

338 weights assigned to each loss function, traditional weighing methods lack a reliable 

339 basis and adjusting these weights can be time-consuming and laborious, which 

340 subsequently making it difficult to achieve the desired optimization result. In addition, 

341 there often exist conflicting objectives among multiple tasks, such as improving the 

342 performance of one task may lead to a decline in the performance of another task, 

343 which makes finding an effective set of weights to achieve simultaneous optimization 

344 of two tasks accompanied by high uncertainty.

345 Speaking of uncertainty, MTL is usually associated with both the cognitive 

346 uncertainty and accidental uncertainty. More specifically, cognitive uncertainty is 

347 caused by the model itself, where the outcome to be predicted is beyond the knowing 

348 range of the model; however, this uncertainty may be reduced as the training data 

349 points get more numerous. Accidental uncertainty includes heteroscedastic and 

350 homoscedastic uncertainties. Whereas the former refers to the uncertainty caused by 

351 differences in the input data, also known as data dependence, the latter is commonly 

352 used to characterize the data noise between different tasks, in that, the optimal weight 

353 for each task depends on its noise size (Kendall et al., 2018). In view of that, the main 

354 consideration, as to the weight assignment of the two learning tasks, is the 

355 homoscedastic uncertainty. In short, the total loss function is assumed to take the 

356 form:

357 𝐿(𝑤,𝜎1,𝜎2,) =
1

2𝜎2
1
𝐿1(𝑤) +

1
2𝜎2

2
𝐿2(𝑤) + log 𝜎1𝜎2   (2)
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358 where 𝜎1 and 𝜎2 signify uncertainties arising from data noise, serving as learnable 

359 parameters. As σincreases, the associated weight decreases; conversely, with 

360 decreasing noise σ, the corresponding weight increases. To mitigate overfitting, 

361 regularization terms are appended to the end of the loss function. During training, 

362 log 𝜎1𝜎2 is introduced as a trainable variable, effectively constraining the loss 

363 function's variation range and preventing division by zero anomalies. In this study, the 

364 initial value of s is set as a random number greater than 0. As the number of training 

365 increases, the s representing the noise characteristics of PM2.5 and AOD eventually 

366 converges to 3.7 and 0.7.

367 Parameter sharing in MTL has two main mechanisms: hard parameter sharing 

368 and soft-parameter sharing (Sun et al., 2019). Hard parameter sharing is suitable for 

369 tasks with strong correlation and can effectively reduce the risk of overfitting. 

370 However, when the correlation of outputs between tasks is poor, MTL with only hard 

371 parameter sharing may not fully satisfy the requirements of all tasks and deteriorate 

372 model performance instead. On the other hand, soft-parameter sharing allows each 

373 task to have separate parameters and hidden layers, while still enables information 

374 access among tasks. The way to achieve this is to regularize the loss at the output 

375 layer, by measuring the distance between the models (Maurer et al., 2012). The 

376 distance, as typically gauged with L1 or L2 loss, describes the parameter similarity 

377 between the same layer of different models, thereby encouraging the similarity of 

378 parameters across multiple tasks. This strategy achieves the goal of preventing 
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379 complete independence in the specific layer and increasing the utilization of pertinent 

380 information.

381 The structure of MTL used in the study is shown in Fig. 4, which contains four 

382 shared layers and three specific layers for each task. Each layer is fully connected to 

383 the adjacent ones, with other techniques and settings including batch normalization, 

384 ReLU activation and dropout mechanism implemented for the network. Batch 

385 normalization seeks to accelerate convergence during training by normalizing the 

386 inputs in each small training batch of data. The shared layers adopt hard parameter 

387 sharing, which ensures that each neuron has identical parameters for both tasks. 

388 Consequently, a set of feature weights (w1, w2, ..., wn) that exhibit generalization 

389 performance is obtained at the end of shared layers. The next steps involve specific 

390 layers. In these specific layers, each task is equipped with an independent model, 

391 possessing its own set of parameters. During training, the parameters of each model 

392 corresponding to each task are updated independently. Following each update, the 

393 distance between model parameters (L2 norm) is introduced as a regularization term 

394 to ensure similarity among parameters as much as possible. This notion of 

395 soft-parameter sharing is greatly inspired by MTL regularization techniques.

396 In addition to setting up the loss function and establishing the model structure, 

397 the selection of hyperparameters is also very important. For example, if the learning 

398 rate is set too high, then the parameter update may be too drastic, causing the loss 

399 function to not converge effectively; Larger batch sizes improve the stability of 
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400 parameter updates. In the training process, we used a 10-fold cross-validation method 

401 to select the best hyperparameters of the MTL model. Specifically, we set the number 

402 of iterations, learning rate and batch size to 378, 0.001 and 1000, respectively, and 

403 selected the Adam optimizer to optimize the weight parameters in the neural network 

404 model.

405

406 Fig. 4. The architecture of MTL model. Both shared layers (left) and specific layers 

407 (right) are full-connected (FC). Hard parameter sharing is used in shared layers while 

408 soft-parameter sharing is applied to the specific layers. ReLU is the activation layer, 

409 BN is a batch normalization layer.

410 3.4 Model Validation

411 A 10-fold cross-validation method is applied in the training dataset (recall 

412 Section 3.1) to select the best model parameters (Rodríguez et al., 2010). The testing 

413 dataset is used to evaluate the model performance based on statistical metrics R2, 

414 RMSE, and mean absolute error (MAE). The EE is used to evaluate the accuracy of 
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415 the MTL model, and the calculation formula is:

416 EE = (1 ± 0.15)yi ± bi   (3)

417 where yi represents the label value of ground-based AOD or PM2.5, and bi 

418 represents the intercept, which takes the value of 0.05 for AOD verification and 5 

419 μg·m–3 for PM2.5 verification.

420 4 Results and discussion

421 4.1 Comparison among three models

422 Here, both STL models and MTL models are validated with test data. First, 

423 according to the spatial distribution of ground stations, 10% of PM2.5 observation 

424 stations (159 blue dots in Fig. 2) are uniformly selected as the test data set 

425 (out-of-station validation), and through spatio-temporal matching between these 

426 stations and MODIS MAIAC AOD, the AOD verification data set at the test station is 

427 obtained. The parameters used to evaluate model performance are R2, RMSE, MAE, 

428 and EE.

429 Figure 5a displays the AOD predictions by the RF model, with respect to 

430 MAIAC AOD. The model has an R2 of 0.84, an RMSE of 0.12, and an MAE of 0.07, 

431 with 80.15% of Within-EE predictions. However, the RF model tends to overestimate 

432 AOD for low MAIAC AOD values and underestimate it for high MAIAC AOD 

433 values. The DNN model (Fig. 5c) sees improvements over the RF model, with an R2 

434 of 0.87. However, there are no significant changes in RMSE and MAE (0.12 and 
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435 0.08). The MTL model (Fig. 5e) performs the best, with the evaluation metrics taking 

436 R2 = 0.88, RMSE = 0.10, MAE = 0.06, and 85.70% Within-EE predictions. 

437 In terms of the PM2.5 prediction, results of STL model and MTL model are 

438 compared. It can be seen from Fig. 5b and Fig. 5d that the result of DNN-STL (R2 = 

439 0.79, RMSE = 15.52 μg·m–3, MAE = 9.66 μg·m–3) is better than that of RF-STL (R2 = 

440 0.78, RMSE = 18.31 μg·m–3, MAE = 12.03 μg·m–3), but the optimization effect is not 

441 obvious, Within-EE only increased by 0.45%. The R2, RMSE, MAE, and Within-EE 

442 for the MTL model are 0.84, 13.76 μg·m–3, 8.47 μg·m–3 and 56.12% (Fig. 5f), 

443 respectively, with significant improvement in all metrics compared with the STL 

444 model. Compared with the traditional STL model, the MTL model developed in this 

445 study optimized both tasks (AOD and PM2.5) to a certain extent. The results further 

446 show that the MTL model is more effective in optimizing PM2.5 than AOD. 
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447

448 Fig. 5. Validation of estimated AOD and PM2.5 on testing sites of RF (a, b), DNN (c, 
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449 d), and MTL model (e, f). The light dotted line represents the EE line, the dark dashed 

450 line represents the 1:1 line, and the red dashed line is the linear regression fitting line.

451 4.2 Site-specific model performance

452 Figure 6 illustrates the spatial distributions of the four-evaluation metrics for the 

453 MTL model on testing sites, revealing significant regional disparities and trends. In 

454 most sites across eastern and coastal China, the values of R2 exceed 0.8 (Fig. 6a and 

455 Fig. 6c), indicating its capability to effectively capture variations in AOD and PM2.5 

456 with a high accuracy. However, the performance of the MTL model experiences a 

457 substantial decline in western China (R2 values are generally less than 0.5), 

458 particularly in areas characterized by complex topography like the Tibetan Plateau. 

459 This observation can be primarily attributed to the scarcity of ground-based 

460 observation sites in that region, hindering the ability of the model to adapt to the 

461 unique aerosol patterns prevalent in this distinctive environment (Fang et al., 2016).

462 Moreover, AOD and PM2.5 exhibit a pronounced north-to-south gradient in terms 

463 of their RMSE distribution in China (Fig. 6b and Fig. 6d), which is consistent with the 

464 findings of previous studies (Wei, et al., 2019). Specifically, sites in the North China 

465 Plain (NCP), which is an area known for its significant anthropogenic emissions, and 

466 Northwest China, which is characterized by substantial natural dust emissions (Gui et 

467 al., 2020), show higher RMSE values for AOD and PM2.5, exceeding 0.18 and 18 

468 μg·m–3.

469
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470

471 Fig. 6. Spatial distribution of MTL model evaluation metrics (a, c: R2 for AOD and 

472 PM2.5, b, d: RMSE for AOD and PM2.5.)

473 In order to comprehensively assess the discrepancy between the estimation 

474 results of the MTL model and the ground-based observations,we utilized the AOD 

475 and PM2.5 ground-based observations for the period of March 12, 2018 to March 11, 

476 2019 to validate the accuracy of the MTL model. These data include AOD 

477 observations from 38 AERONET stations in China and PM2.5 data from 15 air quality 

478 monitoring stations in Hong Kong. Fig 7a demonstrates the comparison results 

479 between the AERONET AOD and the MTL AOD, with an R2 of 0.79, an RMSE of 

480 0.14, an MAE of 0.10, and a Within-EE of 74.09%. In addition, Fig 7b demonstrates 

481 the results of the comparison between the MTL PM2.5 and the ground-level PM2.5 

482 observations in Hong Kong, with an R2 of 0.76, an RMSE of 8.11 μg·m–3, an MAE of 
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483 5.86 μg·m–3, and a Within-EE of 61.35%. These results show that the predictions of 

484 the MTL model are in good agreement with the ground observations, verifying the 

485 reliability of the MTL model.

486 Due to the limited number of ground-based observation sites in Northwest China, 

487 it is difficult to provide sufficient data for validating the performance of the MTL 

488 model in the region. Therefore, in this study, observation sites distributed in 28 cities 

489 in the region were selected and LGHAP AOD and LGHAP PM2.5 data from March 

490 12, 2018, to March 11, 2019, were obtained by spatio-temporal matching. In Fig. 7c, 

491 the results of the comparison between MTL AOD and LGHAP AOD are 

492 demonstrated, with R2 of 0.76, RMSE of 0.13, MAE of 0.10, and Within-EE of 

493 61.28%. And in Fig. 7d, the results of comparison between MTL PM2.5 and LGHAP 

494 PM2.5 are demonstrated with R2 of 0.70, RMSE of 15.44 μg·m–3, MAE of 9.90 μg·m–

495 3, and Within-EE of 51.45%. The results show that the validation results of the MTL 

496 model with ground-based observation sites are better than the validation results of the 

497 MTL model with the LGHAP AOD and LGHAP PM2.5 in Northwest China, 

498 especially in terms of PM2.5. This is mainly due to the limited training data in the 

499 region and the fact that most of the region is in plateaus, basins and mountains with 

500 cold and dry winters and high summer temperatures. In particular, the Taklamakan 

501 Desert surrounded by high mountains and the Gobi Desert in Inner Mongolia are one 

502 of the dust source areas in China, which makes the aerosol types in Northwest China 

503 more complex and diverse.
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504

505 Fig. 7. Scatter plot of validation results of MTL AOD and PM2.5 in different regions. 

506 (a) Comparison results of AERONET AOD and MTL AOD. (b) Comparison results 

507 of HK Ground-based Observations PM2.5 and MTL PM2.5. (c), (d):The results of MTL 

508 AOD (PM2.5) and LGHAP AOD (PM2.5) were compared in Northwest China.

509 4.3 Feature importance of MTL model

510 Owing to the “black box” nature of ML, interpreting the output has hitherto been 

511 a demanding task. In this study, this issue is addressed by employing the DeepLift 

512 algorithm from the Captum core library. The DeepLift algorithm allows us to 
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513 compare model predictions to a reference, enabling the quantification of the 

514 importance of each feature through a modified backpropagation technique. It is worth 

515 noting that we set 0 as the reference baseline for all features when computing 

516 imputation values. Comprehensive Captum tutorials are available on the official 

517 website (https://captum.ai/).

518 Figure 8 shows the attribution score exhibiting the significance of the 

519 independent variable on the dependent variable (AOD or PM2.5). Positive attribution 

520 scores indicate that the feature positively contributes to the predicted value, while 

521 negative scores suggest the opposite. In general, the feature importance of the two 

522 tasks has a certain similarity owing to inner connection between two related tasks and 

523 the parameter sharing mechanism. Specifically, the attribution scores of the visible 

524 channels (CH01 and CH03) are relatively high and have negative directions, –0.19 

525 and –0.15 respectively. Larger values of these two features result in smaller values of 

526 corresponding estimation. When the reflectance of the visible channels is lower, it 

527 usually indicates a stronger aerosol extinction capability in the atmosphere. The 

528 attribution scores of Tcwv in AOD (0.12) and PM2.5 (0.04) are both positive values. In 

529 general, when Tcwv increases, it will cause more extinction by water vapor and also 

530 affect the aggregation and sedimentation of particulate matter, thereby increasing 

531 AOD and PM2.5 concentration. The relative lower attribution score of Tcwv in PM2.5 

532 may be associated with the fact that PM2.5 represents the dry mass concentration of 

533 fine particulate, which is hardly affected by water vapor.
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534 Furthermore, the seasonal effects (Mon) and geographical factor (Lon and Lat) 

535 are critical in AOD and PM2.5 estimation, which represent different temporal and 

536 spatial heterogeneity. It is worth noting that due to the independence of the two tasks, 

537 there will also be some features with opposite attribution score signs (i.e., CH06, U10 

538 and SAZ), which also indicates that the MTL model will have a certain negative 

539 transfer due to different task requirements. Therefore, the MTL model requires high 

540 correlation between different tasks.

541

542 Fig. 8. Attribution scores for MTL model input features. The red and blue bars 

543 represent the importance of the features for the AOD and PM2.5 estimation, 

544 respectively. Positive values indicate a positive contribution to the estimation, while 

545 negative values signify the opposite.
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546 4.4 Spatial distribution of seasonal averages

547 Figure 9 shows the spatial distribution of seasonal means of MTL AOD and 

548 MTL PM2.5 for the period from March 12, 2018 to March 11, 2019. The seasonal 

549 mean values of MTL AOD are higher in spring (0.45) and summer (0.40) and relative 

550 lower in autumn (0.33) and winter (0.38), which is consistent with previous findings 

551 (Chen et al., 2023). The rise in aerosol loading in spring (Fig. 9a) can be attributed to 

552 frequent spring dust events in the north, leading to peaks in natural dust and 

553 windborne sand at the surface (He et al., 2016). Higher Blh in summer lead to vertical 

554 transport of aerosol particles to higher altitudes, which further enhances complete 

555 mixing of aerosols with water within the boundary layer. As a result, smaller aerosol 

556 particles within the boundary layer grow to optically active sizes (Qu et al., 2016). 

557 Higher temperatures in summer enhance photochemical reactions and also lead to an 

558 increase in aerosol loading during this season (Qi et al., 2013). Autumn is usually 

559 accompanied by stable atmospheric circulation and favorable diffusion conditions that 

560 favor dispersion and dilution of particulate matter, thus reducing aerosol loading. In 

561 contrast, in winter, lower Blh may result in particulate matter not being efficiently 

562 transported and mixed to higher altitudes, leading to a reduction in AOD (Qu et 

563 al.,2016). However, higher spatial distributions of AOD may still occur in areas with 

564 high emissions and complex topography, such as Sichuan and Chongqing, where 

565 special topography makes aerosol transport difficult. 

566 Previous studies have indicated that PM2.5 concentrations are higher in winter 
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567 and lower in summer (Li et al., 2017; Leung et al., 2020), which is similar to the MTL 

568 results. PM2.5 concentration are generally low in summer (26.45 μg·m–3) and autumn 

569 (30.81 μg·m–3) in China and showed similar spatial distributions (Fig. 9f and Fig. 9g). 

570 On the contrary, PM2.5 concentrations were significantly higher in spring (37.67 

571 μg·m–3) and winter (41.51 μg·m–3), especially in winter (Fig. 9e and Fig. 9h). The 

572 main reasons are the frequent sandstorms and the long-distance transmission of sand 

573 and dust in spring and the burning of coal and fossil fuels for heating in winter leading 

574 to more pollutant emissions in northern China (Wei et al., 2021).

575 A comparison of seasonal AOD and PM2.5 distribution reveals elevated aerosol 

576 levels over the North China Plain (NCP), Sichuan Basin, and Chongqing, attributed to 

577 factors such as intense human activities, adverse climatic conditions, and geographical 

578 features like basins that intensify anthropogenic aerosol emissions (Wang et al., 

579 2018). Conversely, Northeast China, including Heilongjiang and Jilin, as well as 

580 Southwest China, such as Tibet and Yunnan, exhibit comparatively lower AOD and 

581 PM2.5 levels due to sparse populations and reduced anthropogenic aerosol emissions. 

582 Furthermore, the favorable terrain and climatic conditions in these regions facilitate 

583 the dispersion of pollutants (Su et al., 2018). 
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584

585 Fig. 9. Spatial distribution of seasonal mean AOD and PM2.5 in China in 2018 for (a), 

586 (e) spring (March to May); (b), (f) summer (June to August); (c), (g) autumn 

587 (September to November); and (d), (h) winter (December to February).

588
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589 Fig. 10a and Fig. 10b show the spatial distribution of MTL AOD and LGHAP 

590 AOD, which have high consistency. The high values of MTL AOD and LGHAP 

591 AOD are located in the Taklamakan Desert and Guanzhong region of Shaanxi, and 

592 the annual average AOD ranges from 0.35 to 0.70. In Qinghai, northern Xinjiang, and 

593 the vast portion of Inner Mongolia, the annual average values of AOD are generally 

594 less than 0.3. Fig. 10c and Fig. 10d show spatial distribution of MTL PM2.5 and 

595 LGHAP PM2.5, with annual mean PM2.5 values exceeding 50 μg·m–3 in the Tarim 

596 Basin, northern Xinjiang, and Guanzhong region of Shaanxi. The topographic and 

597 climatic characteristics of the Tarim Basin restrict air movement and dispersion, 

598 leading to the accumulation of pollutants in the basin. The Guanzhong region of 

599 Shaanxi has well-developed industrial and transportation activities, resulting in a large 

600 amount of near-surface release of particulate matter. Overall, the annual mean value 

601 of LGHAP PM2.5 is significantly higher than that of MTL PM2.5, especially in Qinghai 

602 Province, where LGHAP PM2.5 is about 30 μg·m–3 compared to MTL PM2.5 of about 

603 20 μg·m–3. The main reason is that the LGHAP dataset is a gap-free aerosol product 

604 generated by reconstructing MODIS daily AOD gaps, while the MTL model needs to 

605 retrieve AOD under cloud-free conditions. The presence of clouds reduces the spatial 

606 and temporal continuity of the MTL model estimates, which results in the differences 

607 in the spatial distributions of AOD and PM2.5.
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608

609 Fig. 10. In the figure, (a) and (b) are the spatial distribution maps of MTL AOD and 

610 LGHAP AOD in Northwest China, and (c) and (d) are the spatial distribution maps of 

611 MTL PM2.5 and LGHAP PM2.5 in Northwest China.

612 5 Conclusion

613 A high-precision and high-efficiency method for aerosol observation is of great 

614 significance for ameliorating air quality, mitigating climate change, protecting 

615 ecosystem, and improving human health. In order to improve the retrieval accuracy 

616 and efficiency of AOD and PM2.5, a MTL algorithm based on parameter sharing 

617 mechanism is proposed in this study. The constructed MTL model is able to retrieve 

618 AOD and PM2.5 simultaneously based on FY-4A AGRI data and ERA5 reanalysis. 

619 The main conclusions are as follows.

620 (1) The estimated AOD and PM2.5 from three models were evaluated at the 

621 testing sites. The results showed that the MTL model predicted AOD (R2 = 0.88, 

622 RMSE = 0.10, Within-EE = 85.70%) and PM2.5 (R2 = 0.84, RMSE = 13.76 μg·m–3, 

623 Within-EE = 56.12%) the best compared to the conventional STL models (RF and 
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624 DNN). Furthermore, independent validation against AERONET sites in China and 

625 PM2.5 observation sites in HK confirmed the generalization and reliability of MTL 

626 model (AOD: R2 = 0.79, RMSE = 0.14, Within-EE = 74.09% and PM2.5: R2 = 0.76, 

627 RMSE = 8.11 μg·m–3, Within-EE = 61.35%). The performance of MTL model in 

628 Northwest China is mainly affected by geographical conditions and the number of 

629 training data.

630 (2) The feature contribution score of MTL model is calculated by using 

631 attribution algorithm. The results show that the feature contribution distributions of 

632 the two tasks are similar, but a few features have opposite contributions to the two 

633 tasks, which is related to the independence of the tasks. Poor correlation between 

634 tasks can lead to negative transfer effects in multiple MTL models across different 

635 tasks.

636 (3) The MTL model was used to estimate the AOD and PM2.5 concentrations in 

637 China in 2018, and the spatial distribution map was drawn. The results showed that 

638 the highest and lowest AOD values were found in spring (0.45) and autumn (0.33). In 

639 contrast, the seasonal variation of PM2.5 is large, with the highest and lowest PM2.5 

640 concentrations in winter (41.51 μg·m–3) and summer (26.45 μg·m–3). In addition, the 

641 difference of spatial distribution in Northwest China mainly depends on the 

642 spatio-temporal continuity of MTL model estimation results, and an effective 

643 interpolation algorithm can improve the integrity of MTL model estimation results.

644 The results of this study are based on the sample data collected from 1590 
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645 ground-based sites in China. However, the distribution of these sites is uneven, which 

646 further affects the overall training effect of the model, therefore, the estimation results 

647 in Northwest China have further room for improvement. In future work, using more 

648 efficient cloud detection algorithms and interpolation algorithms can further improve 

649 the accuracy and completeness of MTL model estimation results.
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